Fonctions caractéristiques

Soit E un ensemble non vide. Pour toute partie A de E, on définit <u>l'application</u> caractéristique de A, notée χ_A , par :

$$\chi_A: E \longrightarrow \{0,1\}$$

$$x \longmapsto \chi_A(x) = \begin{cases}
1 & \text{si } x \in A \\
0 & \text{si } x \notin A
\end{cases}$$

Dans tout ce qui suit, on notera \overline{A} le complémentaire de A dans E.

Partie I : Propriétés des fonctions caractéristiques

Dans cette partie A et B désignant deux sous-ensembles de E.

- 1. Expliciter les applications χ_E et χ_{\emptyset} . Ces applications sont-elles injectives sur E, surjectives de E sur $\{0,1\}$?
- 2. (a) Démontrer que : $A \subset B \iff \forall x \in E, \ \chi_A(x) \leq \chi_B(x)$.
 - (b) En déduire que : $A = B \iff \chi_A = \chi_B$.
- 3. Etablir que : $\chi_{\overline{A}} = 1 \chi_A$.
- 4. Montrer que : $\chi_A \times \chi_A = \chi_A$.
- 5. Démontrer que : $\chi_{A \cap B} = \chi_A \times \chi_B$.
- 6. Etablir que : $\chi_{A \cup B} = \chi_A + \chi_B \chi_{A \cap B}$.
- 7. On pose : $C = A \setminus B$. Démontrer que : $\chi_C = \chi_A \times (1 \chi_B)$.

Partie II : Différence symétrique

Si A et B sont deux parties de E, on appellera différence symétrique de A et B la partie de E suivante :

$$A\Delta B = (A\backslash B) \cup (B\backslash A).$$

- 1. (a) Etablir que pour toutes parties A et B de E, on a : $A\Delta B = (A \cup B) \setminus (A \cap B)$.
 - (b) Déterminer $\chi_{A\Delta B}$ en fonction de χ_A et de χ_B (on pourra utiliser les résultats de la partie I).
 - (c) En déduire que, pour toutes parties A, B et C de E, on a :

$$A\Delta(B\Delta C) = (A\Delta B)\Delta C.$$

2. (a) Donner un exemple d'ensemble E et de trois parties A, B et C vérifiant : $A \cup B = A \cup C$ et $B \neq C$.

1

(b) On revient au cas général. Etablir que, pour toutes parties $A,\,B$ et C de E, on a :

$$A\Delta B = A\Delta C \Longrightarrow B = C.$$

Partie III : Résolution de l'équation $A\Delta X=B$ dans $\mathscr{P}(E)$.

Soient A et B deux parties de E fixées. On définit l'application :

$$\Phi_A: \quad \mathscr{P}(E) \quad \longrightarrow \quad \mathscr{P}(E) \\
X \quad \longmapsto \quad A\Delta X$$

- 1. Soit X une partie de E.
 - (a) Calculez $A\Delta A$ et $\emptyset \Delta X$.
 - (b) Utilisez les résultats de la partie II pour en déduire la valeur de $\Phi_A(\Phi_A(X))$.
- 2. En déduire, toujours à l'aide de la partie II, que Φ_A est bijective de $\mathscr{P}(E)$ sur $\mathscr{P}(E)$. Déterminer son application réciproque.
- 3. Déduire de ce qui précède que, pour toutes parties A et B de E fixées, l'équation $A\Delta X=B$ possède une unique solution, que l'on exprimera en fonction de A et B.