Méthode de Cardan sur un exemple

Le but de cet exercice est de résoudre l'équation d'inconnue $z\in\mathbb{C}$:

$$z^3 - 6z + 4 = 0. (1)$$

- 1. (a) On pose w = -2 + 2i. Mettre w sous forme trigonométrique.
 - (b) Résoudre dans $\mathbb C$ l'équation : $z^3=w.$ Donner les solutions sous forme trigonométrique.
 - (c) On pose $j = e^{i\frac{2\pi}{3}}$. Montrer que les solutions sont : 1+i, (1+i)j et $(1+i)j^2$.
 - (d) En déduire les valeurs exactes de $\cos\left(\frac{11\pi}{12}\right)$ et $\sin\left(\frac{11\pi}{12}\right)$.
- 2. On se donne $z \in \mathbb{C}$ solution de (1).

Soient $u, v \in \mathbb{C}$ tels que u + v = z et uv = 2.

- (a) Calculer $u^3 + v^3$ et u^3v^3 .
- (b) En déduire que u^3 et v^3 sont solutions de l'équation du second degré : $Z^2+4Z+8=0$.
- (c) Déterminer les valeurs possibles de u et v puis de z.
- (d) En déduire les solutions de l'équation (1).