Sommes de sous-espaces vectoriels : cas général et exemple

Soient \mathbb{U} et \mathbb{V} deux sous-espaces vectoriels de \mathbb{K}^n . On définit un sous-ensemble \mathbb{F} de \mathbb{K}^n par :

$$\mathbb{F} = \left\{ \overrightarrow{x} \in \mathbb{K}^n / \exists (\overrightarrow{u}, \overrightarrow{v}) \in \mathbb{U} \times \mathbb{V} \text{ tels que } \overrightarrow{x} = \overrightarrow{u} + \overrightarrow{v} \right\}$$

On a donc, pour tout $\overrightarrow{x} \in \mathbb{K}^n$:

$$\overrightarrow{x} \in \mathbb{F} \iff \text{il existe } (\overrightarrow{u}, \overrightarrow{v}) \in \mathbb{U} \times \mathbb{V} \text{ tels que } \overrightarrow{x} = \overrightarrow{u} + \overrightarrow{v}$$

 $\mathbb F$ est appelé « somme de $\mathbb U$ et $\mathbb V$ » et est noté $\mathbb U+\mathbb V.$

Partie I : Propriétés de l'ensemble \mathbb{F}

- 1. Vérifer que \mathbb{F} est un sous-espace vectoriel de \mathbb{K}^n .
- 2. Établir que \mathbb{F} est le plus petit (au sens de l'inclusion) sous-espace vectoriel de \mathbb{K}^n contenant \mathbb{U} et \mathbb{V} .
- 3. Soient $\mathcal{F} = (\overrightarrow{u_1}, \dots, \overrightarrow{u_p})$ une famille génératrice de \mathbb{U} , et $\mathcal{G} = (\overrightarrow{v_1}, \dots, \overrightarrow{v_m})$ une famille génératrice de \mathbb{V} . Montrer que $\mathcal{H} = \mathcal{F} \cup \mathcal{G} = (\overrightarrow{u_1}, \dots, \overrightarrow{u_p}, \overrightarrow{v_1}, \dots, \overrightarrow{v_m})$ est une famille génératrice de \mathbb{F} .
- 4. En déduire que : $\dim(\mathbb{F}) \leq \dim(\mathbb{U}) + \dim(\mathbb{V})$.

<u>Partie II</u>: Sommme directe de sous-espaces vectoriels

On dira que \mathbb{F} est somme <u>directe</u> de \mathbb{U} et de \mathbb{V} lorsque $\mathbb{F} = \mathbb{U} + \mathbb{V}$ et $\mathbb{U} \cap \mathbb{V} = \{\overrightarrow{0}\}$. Dans ce cas, on le notera : $\mathbb{F} = \mathbb{U} \oplus \mathbb{V}$.

- 1. On suppose que $\mathbb{F} = \mathbb{U} + \mathbb{V}$. Démontrer l'équivalence des deux propriétés suivantes :
 - (i) $\mathbb{F} = \mathbb{U} \oplus \mathbb{V}$
 - (ii) pour tout $\overrightarrow{x} \in \mathbb{F}$, il existe un unique couple $(\overrightarrow{u}, \overrightarrow{v}) \in \mathbb{U} \times \mathbb{V}$ tel que : $\overrightarrow{x} = \overrightarrow{u} + \overrightarrow{v}$.
- 2. On suppose que $\mathbb{U} \cap \mathbb{V} = \{\overrightarrow{0}\}$. Soient $\mathcal{F} = (\overrightarrow{u_1}, \dots, \overrightarrow{u_p})$ une famille libre de vecteurs de \mathbb{U} , et $\mathcal{G} = (\overrightarrow{v_1}, \dots, \overrightarrow{v_m})$ une famille libre de vecteurs de \mathbb{V} . On pose $\mathcal{H} = \mathcal{F} \cup \mathcal{G} = (\overrightarrow{u_1}, \dots, \overrightarrow{u_p}, \overrightarrow{v_1}, \dots, \overrightarrow{v_m})$. Montrer que \mathcal{H} est libre.
- 3. On suppose que : $\mathbb{F} = \mathbb{U} \oplus \mathbb{V}$.
 - (a) Établir que si \mathcal{B} est une base de \mathbb{U} et \mathcal{C} une base de \mathbb{V} , alors $\mathcal{B} \cup \mathcal{C}$ est une base de \mathcal{F} .
 - (b) En déduire que : $\dim(\mathbb{F}) = \dim(\mathbb{U}) + \dim(\mathbb{V})$.

Partie III : Un premier exemple

Dans \mathbb{R}^3 , on considère les vecteurs : $\overrightarrow{v_1} = (-2, 0, 1)$, $\overrightarrow{v_2} = (-3, 1, 0)$ et $\overrightarrow{v_3} = (-1, 2, -2)$. On pose $\mathbb{U} = \text{Vect}(\overrightarrow{v_1}, \overrightarrow{v_2})$ et $\mathbb{V} = \text{Vect}(\overrightarrow{v_3})$.

- 1. (a) Déterminer une base, la dimension et un système d'équations cartésiennes de U.
 - (b) Même question avec \mathbb{V} .
- 2. (a) Justifier que : $\mathbb{U} + \mathbb{V} \subset \mathbb{R}^3$.
 - (b) Montrer que : $\mathbb{R}^3 = \mathbb{U} + \mathbb{V}$.
 - (c) A-t-on: $\mathbb{R}^3 = \mathbb{U} \oplus \mathbb{V}$?
- 3. On pose : $\mathbb{W} = \text{Vect}(\overrightarrow{v_1})$. A-t-on : $\mathbb{R}^3 = \mathbb{W} + \mathbb{V}$? (Utiliser la partie I)

Partie IV: Un second exemple

Dans
$$\mathbb{R}^n$$
, on considère : $\overrightarrow{u} = (1, \dots, 1)$, $\mathbb{U} = \text{Vect}(\overrightarrow{u})$ et $\mathbb{V} = \left\{ (x_1, \dots, x_n) \in \mathbb{R}^n \middle/ \sum_{i=1}^n x_i = 0 \right\}$.

- 1. On veut montrer que : $\mathbb{R}^n = \mathbb{U} \oplus \mathbb{V}$.
 - (a) Montrer que \mathbb{V} est un sous-espace vectoriel de \mathbb{R}^n et que $\mathbb{U} + \mathbb{V} \subset \mathbb{R}^n$.
 - (b) Soient $\overrightarrow{x} = (x_1, \dots, x_n) \in \mathbb{R}^n$ et $\lambda = \frac{1}{n} \sum_{i=1}^n x_i$.

Montrer qu'il existe $\overrightarrow{v} = (v_1, \dots, v_n) \in \overset{i=1}{\mathbb{V}}$ tel que : $\overrightarrow{x} = \lambda \overrightarrow{u} + \overrightarrow{v}$.

- (c) En déduire que : $\mathbb{R}^n = \mathbb{U} \oplus \mathbb{V}$.
- (a) Déterminer une base, la dimension et un système d'équations cartésiennes de \mathbb{U} .
- (b) A l'aide de la partie II, déterminer la dimension de \mathbb{V} .
- (c) Pour $i \in [\![2,n]\!]$, on pose : $\overrightarrow{\epsilon_i} = (1,0,\ldots,0,-1,0,\ldots,0)$ (la $i^{\grave{\mathrm{e}}\mathrm{me}}$ composante est égale à -1). Vérifier que $(\overrightarrow{\epsilon_2},\ldots,\overrightarrow{\epsilon_n})$ est une base de $\mathbb V$.
- 2. À l'aide de la partie II, montrer que $\mathcal{B} = (\overrightarrow{u}, \overrightarrow{\epsilon_2}, \dots, \overrightarrow{\epsilon_n})$ est une base de \mathbb{R}^n . Donner les coordonnées de $\overrightarrow{w} = (1, 2, 3, \dots, n)$ dans cette base.