REVISIONS DE MATHEMATIQUES

Ce devoir est à travailler tout au long de l'été et à rendre le jour de la rentrée.

Il sera noté.

Si vous êtes bloqués sur un exercice vous pouvez m'écrire à l'adresse arnaud.begyn@free.fr

EXERCICE 1.

On munit $\mathcal{M}_2(\mathbb{R})$ du produit scalaire $\langle M, N \rangle = \text{Tr}(M^\top N)$ et de la norme euclidienne associée : $||M|| = \sqrt{\langle M, M \rangle}$.

- **1.** Si $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ et $N = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$ vérifier que $\langle M, N \rangle = a\alpha + b\beta + c\gamma + d\delta$. Calculer aussi $\|M\|$ en fonction de a, b, c et d.
- **2.** Vérifier que $\langle \cdot, \cdot \rangle$ est bien un produit scalaire sur $\mathcal{M}_2(\mathbb{R})$.
- 3. Montrer que $F = \left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix}, (a,b) \in \mathbb{R}^2 \right\}$ est un sous-espace vectoriel de $\mathcal{M}_2(\mathbb{R})$ et trouver une base (E_1, E_2) de F.
- **4.** Déterminer une base orthonormée (E_3, E_4) de F^{\perp} .
- **5.** En déduire la projection orthogonale sur F^{\perp} de $J = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$.

EXERCICE 2.

Soient $A = \begin{pmatrix} 2 & 1 & 0 \\ -3 & -1 & 1 \\ 1 & 0 & -1 \end{pmatrix}$ et $f \in \mathcal{L}(\mathbb{R}^3)$ l'endomorphisme canoniquement associé.

- 1. Déterminer une base de Ker(f) et Im(f).
- **2.** On pose $u_1 = (2, -4, 2)$, $u_2 = (1, 0, -1)$ et $u_3 = (0, 1, 1)$. Montrer que $\mathcal{C} = (u_1, u_2, u_3)$ est une base de \mathbb{R}^3 , puis vérifier que la matrice de f dans \mathcal{C} est $D = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$.
- $\boxed{\bf 3.}$ Ecrire la formule de changement de base reliant A et D.

EXERCICE 3.

Soit $P \in \mathbb{R}[X]$ tel que $(X^2 - X)P'' = 6P$ et $P \neq 0_{\mathbb{R}[X]}$.

- 1. Montrer que deg(P) = 3.
- **3.** Décrire l'ensemble $\{P \in \mathbb{R}[X] \mid (X^2 X)P'' = 6P\}$ à l'aide de la notation Vect().

EXERCICE 4.

Pour tout $n \in \mathbb{N}^*$, on pose $u_n = 1 + \frac{1}{2} + \dots + \frac{1}{n} - \ln(n)$.

- **1.** Rappeler le $DL_2(0)$ de $\ln(1+x)$ puis démontrer que : $u_n u_{n-1} = -\frac{1}{2n^2} + o\left(\frac{1}{n^2}\right)$
- **2.** En déduire un équivalent de $u_n u_{n-1}$. La série $\sum (u_n u_{n-1})$ est-elle convergente?
- **3.** Démontrer que la suite $(u_n)_{n\geq 1}$ est convergente.

EXERCICE 5.

Soit (u_n) une suite réelle telle que $u_0 = a > 0$ et $\forall n \in \mathbb{N}, \ u_{n+1} = u_n e^{-u_n}$.

- 1. Montrer que, pour tout entier $n, u_n > 0$.
- **2.** Montrer que la suite (u_n) converge vers 0.
- 3. Démontrer que la série $\sum \left(\ln(u_{n+1}) \ln(u_n)\right)$ diverge et en déduire que la série $\sum u_n$ diverge.

EXERCICE 6.

Pour $n \in \mathbb{N}$ on pose $I_n = \int_0^{\pi/2} \sin(t)^n dt$.

- **1.** Démontrer que pour tout $n \in \mathbb{N} : 0 \leq I_{n+1} \leq I_n$.
- **2.** En intégrant par parties démontrer que $I_{n+2} I_n = -\frac{1}{n+1}I_n$.
- 3. En posant $s = \frac{\pi}{2} t$ démontrer que $I_n = \int_0^{\pi/2} \cos(t)^n dt$.

EXERCICE 7.

Une urne contient initialement une boule blanche et une boule noire.

On y effectue des tirages successifs et, à chaque pas du tirage :

- on replace dans l'urne la boule tirée
- on ajoute une boule supplémentaire de la même couleur.

On désigne par X_n le nombre de boules blanches obtenues au cours des n premiers tirages.

- 1. Démontrer que $X_1 \sim \mathcal{U}(\{0,1\})$.
- **2.** Donner $X_2(\Omega)$. Quelle formule du cours permet d'écrire :

$$\mathbb{P}(X_2 = 0) = \mathbb{P}(X_1 = 0)\mathbb{P}(X_2 = 0|X_1 = 0) + \mathbb{P}(X_1 = 1)\mathbb{P}(X_2 = 0|X_1 = 1)$$
?

Sans calcul (c'est-à-dire en utilisant la description de l'expérience dans l'énoncé) justifier que $\mathbb{P}(X_2=0|X_1=0)=\frac{2}{3} \text{ et } \mathbb{P}(X_2=0|X_1=1)=0 \text{ puis en déduire que } \mathbb{P}(X_2=0)=\frac{1}{3}.$

Adapter le calcul pour obtenir $\mathbb{P}(X_2 = 1)$ et $\mathbb{P}(X_2 = 2)$ puis conclure que $X_2 \sim \mathcal{U}(\{0, 1, 2\})$.

- **3.** En raisonnant de même avec X_2 et X_3 démontrer que $X_3 \sim \mathcal{U}(\{0,1,2,3\})$.
- **4.** Par récurrence sur $n \in \mathbb{N}^*$, démontrer que $X_n \sim \mathcal{U}(\llbracket 0, n \rrbracket)$.