REVISIONS DE MATHEMATIQUES : CHALLENGE

Ce devoir est à travailler tout au long de l'été et à rendre le jour de la rentrée.

Il est facultatif.

Si vous êtes bloqués sur un exercice vous pouvez m'écrire à l'adresse arnaud.begyn@free.fr

EXERCICE 1.

On note $\mathbb{U} = \{z \in \mathbb{C} \mid |z| = 1\}$. Quels sont les polynômes P complexes tels que $P(\mathbb{U}) \subset \mathbb{U}$?

EXERCICE 2.

Pour $n \in \mathbb{N}$, on pose $a_n = \int_0^1 t^n \sqrt{1 - t^2} dt$.

- 1. Montrer que la suite $(a_n)_{n\in\mathbb{N}}$ est décroissante. Calculer a_0 et a_1 .
- 2. Montrer que, pour tout $n \in \mathbb{N}$, $a_{n+2} = \frac{n+1}{n+4}a_n$.
- 3. Montrer que $((n+3)(n+2)(n+1)a_{n+1}a_n)_{n\in\mathbb{N}}$ est une suite constante.
- 4. En déduire un équivalent de a_n .
- 5. La série $\sum a_n$ est-elle convergente?

EXERCICE 3.

Soit $(\Omega, \mathcal{A}, \mathbb{P})$ un espace probabilisé. Soient A_1, \ldots, A_n des événements. Calculer

$$S_n = \sum_{(B_1, \dots, B_n) \in \mathcal{C}_n} \mathbb{P}(B_1 \cup \dots \cup B_n) \quad \text{où} \quad \mathcal{C}_n = \{A_1, \overline{A_1}\} \times \dots \times \{A_n, \overline{A_n}\}$$

EXERCICE 4.

Existe-t-il
$$M \in \mathcal{M}_3(\mathbb{C})$$
 telle que $M^2 = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$?